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The dynamics of a large stellar (globular) cluster containingN= 128,000 stars
has been simulated using a direct summation(O(N2))method and a heterogeneous
platform. Preliminary simulations have been carried out on model systems with and
without the presence, in their center of mass, of a black hole whose mass has been
varied from 0.02 to 0.1 times the total mass of the cluster. These simulations followed
the evolution of the globular cluster in order to describe its dynamics over an interval
of time sufficiently large with respect to the internal crossing time. Computations
have demonstrated that the platform heterogeneity, allowing a very efficient use of
the computational resources, can be considered a key feature for sustaining large
computational loads. Our results show that the massive object in the center of the
cluster alters the surrounding star distribution very quickly; the following evolution
is much slower, as it occurs via two-body collisional relaxation.c© 2001 Elsevier Science
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1. INTRODUCTION

Although the main trend of high-performance computing seems to focus on the assembly
of larger and larger massively parallel platforms (e.g., the US ASCI platforms [1]), the
design, the realization, and the deployment ofspecial-purpose(nonprogrammable, i.e.,
dedicated) or specializedhardware is at the center of a renewed interest, particularly in the
field of scientific applications.

In recent years, several scientific domains have received a substantial boost by using
specialized (or dedicated) hardware: the lattice quantum chromodynamics model, thanks
to the platforms realized in the frame of the APE [2, 3] and the Columbia projects [4],
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has significantly increased its prediction power. Computational astrophysics has received
significant benefits from the use of the dedicated (or special-purpose) platform GRAPE
(GRAvity piPE) [5, 6], which is able to sustain a computational power of the order of ter-
aflops/second in gravitationalO(N2) calculations, being a board explicitly built to evaluate
efficiently the distances between pairs. More recently, the use of more complexN-body
codes requiring a substantial number ofO(N log N) calculations has triggered the develop-
ment of new dedicated hardware, built by exploiting new programmable devices (FPGA),
used in combination with the GRAPE machine (AHA–GRAPE project [7]).

Other dedicated and specialized hardware devices have been also conceived to improve
the sustained computational power of numerical modeling in the field of three-dimensional
(3D) Ising models [7, 8], in that of molecular orbital calculation in quantum chemistry [10],
and in molecular dynamics simulation of complex systems (e.g., biological matter) [11].
This list, far from being exhaustive, puts together both dedicated (nonprogrammable) and
specialized (programmable) devices. Whereas dedicated architectures cannot be deployed in
application fields different from those for which they were conceived, specialized hardware
(like, e.g., the APE platform) can be usefully deployed in different application fields. For
example, the hybrid platform PQE1 (described in Section 2 and used for the computations
in this paper) has been used on a variety of scientific problems, including chemistry [12],
electromagnetism [23], environmental modeling [14], and material sciences [15], showing
good performance and flexibility. In this paper we apply it for the first time to another, quite
different, field: that of stellar dynamics, attacking the classic gravitationalN-body problem
without approximations in the particle–particle force evaluation. In order to take the most
from the dedicated/specialized platforms, their power is often exploited in conjunction
with a host platform (a simple workstation or a general-purpose parallel platform). In this
configuration, the specialized/dedicated platform can be regarded as a smart coprocessor of
the host to which specific parts of the computation can be allotted. The resulting hardware
is, thus, theheterogeneoussum of general-purpose and specialized/dedicated machines; it
allows very efficient calculations, as different (in terms of algorithmic structure) parts of
the code can be allotted to the parts of the architecture most suited to mapping their specific
computational complexity.

This work has addressed two different issues. The first is concerned with the astrophysical
problem of simulating, with a reliable model, the dynamics of a large stellar cluster whose
central region hosts a massive object (like a black hole). The aim is to apply these numerical
models, which are approximated just in regard to the numerical time integration scheme
and in a smoothing of the interaction potential, to a time of the order of 20 crossing times
(thecrossing time tc = 2R/〈v〉 is the time required by the typical object of the system to
cross the system, i.e., to cover a length scale equal to twice the initial radius of the systemR,
with a velocity〈v〉 equal to the average star’s velocity). Actually, we estimate this interval
of time as sufficient to sum up collective effects even if it is still short with respect to the
two-body relaxation time that is the “fine grain”-dependent time scale.

The representation of a large self-gravitating system with a particle model is, indeed,
limited by the number,N, of particles that can be numerically handled; astrophysical self-
gravitating systems span a range ofN from 2 to 1012 (see Table I). The direct evaluation (i.e.,
that obtained by the sum of the contributions to the force on an object of the system made
by all the others without approximations, with the exception of a possible smoothing of the
interaction potential) of theN-body mutual forces implies a restrictive limit to the number
of bodies which can be treated (being the algorithm of anO(N2) scaling). At present,
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TABLE I

The Range of the Number of Stars in Several Astrophysical Systems,

the Numerical Approximation Commonly Used by Simulations, and the

Two-Body Relaxation Time of the Object in Units of Crossing Time

Stellar system N Numerical approximation trel/tc

OB associations 10–100 Direct 1–5
Open clusters 100–1000 Direct 5–30
Globular clusters 105–106 Direct 103–104

Dwarf galaxies 108 Tree algorithm, PM, P3M 107

Galaxies 1010–1012 Tree algorithm, PM, P3M 108–109

Note.The value of the relaxation timetrel has been expressed in terms of the crossing
time tc by means of the relationtrel = 0.1 N

ln N
tc (see [16]).

the largest value ofN that can be approached with such methods, on large computational
platforms, isN ' 105. This means that a one-to-one representation of stars with simulating
particles is now possible only for stellar systems up to a typical (not too populous) globular
cluster (see Table I). Larger systems can be treated with approximate methods, such as
tree codes[17] andparticle–mesh(PM) andparticle–particle-particle–mesh(P3M) [18]
algorithms.

The second aim of this work is to focus on the key role which could be played by hetero-
geneous platforms to efficiently cope with complex computational problems. In this case, a
heterogeneous platform, made by connecting a specialized architecture to a general-purpose
platform, is used in a computationally intensive computational problem. The efficient use of
the platform (induced by a suitable mapping of the algorithm onto the machine architecture
and the use of a smart communication scheme) has allowed us to reach a sustained compu-
tational power of the order of 10 Gflops/s, necessary to perform extensive calculations.

The scheme of the paper is the following. The next section provides a brief outlook
of the heterogeneous platform used to perform computations. The definition of the phys-
ical model considered for the computations is the object of the third section, which also
contains a schematic layout of the techniques used to implement the calculations on the
computing architecture. The fourth and the fifth sections are devoted to the presentation
and the discussion of the results. In these sections both the scientific relevance of the re-
sulting data and the fate of heterogeneous computing in complex scientific calculations are
discussed.

2. LAYOUT OF THE COMPUTATIONAL PLATFORM

The heterogeneous platform used for computations is a MIMD–SIMD [19] platform,
called PQE1 (Fig. 1), realized in the frame of an industrial program by ENEA and QSW
(an Italian company of the Finmeccanica group) [20]. The PQE1 is a platform where the
flexibility and the operability of a MIMD platform with a distributed-memory architecture
are coupled to the power and the efficiency of SIMD machines. We assume that most
algorithms arising in scientific applications are mainly expressible through synchronous
programs with synchronous communications. These execute the same instruction on sets
of different data, which can be easily mapped onto data parallel structures with regular
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FIG. 1. Schematic layout of the PQE1 platform. The proprietary multistage switch network of the CS2
platform has a Fat Tree topology. Aside from the HiPPI channel, there is a transputer-based link which allows
communications to occur between the CS2 node and the connected SIMD platform.

patterns of memory access. Under these assumptions, it is reasonable to allot those parts to
the SIMD machine, leaving the remaining tasks of the computation to be executed on the
MIMD part. The PQE1 platform consists of a MIMD general-purpose platform, acting as
a docking unit, and of seven SIMD machines.

The MIMD system is a Meiko/QSW CS-2 platform with eight nodes, each of them
based on a dual-HyperSparc processor at 125 MHz, connected in the SMP configuration
by a Meiko/QSW proprietary network based on the Elan/Elite devices and implementing a
multistage interconnection network with Fat Tree topology and a point-to-point bandwidth
of 100 Mbytes/s. This platform offers a peak speed of 2.18 Gflops/s and has about 2 Gbytes
of addressable RAM.

The SIMD platforms come from the APE project (APE100 [2, 3]) and have been produced
by QSW with the commercial name of Quadrics. The installed platforms have the following
characteristics: two of them (called QH4) have 512 floating point units (FPU) arranged as
an (8× 8× 8) 3D torus, and five of them (called QH1) have 128 FPUs arranged as an
(8× 4× 4)3D torus. Each FPU is based on a custom VLIW processor, has a clock frequency
of ν = 25 MHz, and is able to terminate a “normal-operation”AB+ C (whereA, B, and
C are IEEE 754 standard, single-precision, real numbers) every clock cycle. Each processor
thus executes two floating point operations in one clock cycle (when the pipeline is full) and
has a peak speed of 50 Mflops/s. Each FPU is connected to a data memory of 4 Mbytes and
has an internal register file (RF) with 128 registers. Each clock cycle, the processor is able to
read two operands from RF and write one result to RF. Communications with other adjacent
FPUs, connected in the north, south, east, west, up, and down directions, are synchronous
and memory mapped. The interprocessor communication bandwidth is 12.5 Mbytes/s, so
the 512 (128) processor configuration has an aggregate bandwidth of 6.4 (1.6) Gbytes/s and
a peak speed of 25.6 (6.4) Gflops/s.

The SIMD APE100/Quadrics machines are connected to the MIMD system through
HiPPI (High-Performance Parallel Interface) channel, which provides a bandwidth of
20 Mbytes/s. Each MIMD node is connected to a different SIMD platform, as in the scheme
of the complete prototype reported in Fig. 1. Looking at previous data, it is clear that
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the machine is strongly unbalanced, having the highest computational and communication
speed in the SIMD part.

The rationale for the design of such a prototype platform is related to the necessity of
having a complex computing platform whose complexity mirrors that of the computational
codes used in scientific applications. These latter are, in fact, formed by a sequence of tasks,
each of them characterized by atask granularity, gt , given by

gt = Nop

DI /O
, (1)

where Nop is the number of floating point operations to be performed andDI /O is the
amount of I/O data to be processed in the task. Analogously, it is possible to define a
machine granularity, gm, given by

gm = Fop

B
, (2)

whereFop is the computational power of the platform andB its I/O bandwidth. It has been
proved [23] that an efficient implementation of the task on a given computational platform
implies that

gm < ηgt , (3)

whereη is a suitable factor 0< η < 1 expressing the efficiency of the task implementation.
For this reason, an efficient implementation of a complex computational code implies the
simultaneous presence of a complex computational structure able to satisfy the requirement
of Eq. (3) for each task composing the code. The complexity of the PQE1 platform is thus
exploited by allotting the high-granularity tasks to the SIMD part and the low-granularity
and the pre/post-processing tasks to the MIMD machine. Incidentally, the estimate of the
theoretical peak power speed of the complete (1664 processors) PQE1 machine is∼85
Gflops, which is significantly lower than the 1.08 Tflops of GRAPE4 [6]. Just the follow-up
of the Quadrics/APE100 platform, which will be based on the APE1000 SIMD machine,
will reach 1 Tflops (66-Mhz processors) and 1.6 Tflops (100 Mhz). By the way, as we show,
even using part of the whole PQE1 system, it is possible to represent 128-K particle systems
for tens of crossing times with acceptable accuracy.

3. MODEL AND COMPUTATIONS

We represent the stellar system as a set ofN= 128,000 point-masses (stars) interacting
via the classical pair gravitational potential

V(ri j ) = −G
mi mj

ri j
, (4)

whereri j is the distance between thei th and j th stars of the system. The stellar masses
are assumed all equal. To avoid force divergence, asmoothinglengthε is introduced, such
that the replacement ofri j with r ′i j = (r n

i j + εn)1/n allows a mollification, dependent on the
integern ≥ 1, of the interaction potential. The introduction of the smoothing parameterε
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and the choice ofn affects the dynamics below and above that length scale. This parameter,
in general, is set to values smaller than the average interparticle distance, in order to ensure
an acceptable level of approximation of the system’s dynamics. The choice ofn is, of
course, arbitrary and depends on the type and level of smoothing one wants to reach. The
choicen = 2 corresponds to the replacement of point-masses with Plummer’s spheres of
coreradiusε (see Eq. (5)) and it is often used in the literature without any compelling reason
(ε is always much larger than the stellar radius). We perform the computations presented
in this paper usingn = 1 and, for the sake of comparison,n = 2. The main differences in
the family of smoothing potentials as dependent onn are as follows: (i) onceε is fixed,
in the limit r À ε the larger then, the closer the smoothed potential to the Newtonian (of
course, the same level of approximation can be reached with a smallern taking a smaller
ε); (ii) for ri j → 0 the (attractive) interaction force approaches zero whenevern > 1, while
it tends to the limit 1/ε2 whenn = 1. Figure 2 shows the ratio between the intensities of the
smoothed interaction force and the Newtonian as a function of the (true) distance between
two particles in units ofε. It should be noted how the force during close encounters is
strongly underestimated: as reference, whenri j = ε/100, the force evaluated withn = 1,
2, 3, 4 is, respectively, a factor of 10−4, 10−6, 10−8, 10−10 smaller than the Newtonian.
Point (ii) means that the particular choicen = 1 keeps some of the correct Newtonian
sharpness of close encounters (ri j /ε ≤ 1), as required when the smoothing, as in our case,
is introduced just for computational convenience andnot (as is often the case) to artificially

FIG. 2. The (logarithmic) ratio of the softened to the newtonian gravitational force between two particles, for
four values of the exponentn in the softening formula (which labels the curves) as a function of their distance (in
units of the softening parameterε).
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reduce the degree ofcollisionality of the system because the aim is to represent systems
with large N with a (much) smaller number of particles. Of course this choice implies
a slower convergence to the Newtonian potential at larger scales (to have the same 90%
approximation of then = 2 case, anε five times smaller is required).

In this paper (see Section 4) we present a set of computations performed using the simplest
(n = 1) smoothing formula as reference, and, for the sake of comparison, the simulation
of the evolution of the system with a massive black hole at its center has been done using,
also, then = 2 smoothed distance (keeping of course the same value ofε).

When a massive object is present in the system (as a massive black hole) another length
scale is naturally introduced into the problem: the tidal radiusrt = (mBH

2m )
1/3R∗. A star of

massm and radiusR∗ approaching a black hole (of massmBH) at a distance smaller thanrt

is destroyed by the strong tidal deformation, and consequently, its mass goes to increase that
of the black hole, with a positive feedback on the tidal radius. Our computational code takes
into account the possibility that a star is swallowed by the massive object which, accordingly,
increases its mass and itsrt . However,rt is usually much smaller than the typical interstellar
distance, so thatmBH remains almost unchanged throughout the simulations.

The initial spatial distribution of theN stars of equal masses has been sampled by a
spherical Plummer distribution (see [22]),

ρ(r ) = ρ0[
1+ ( r

rc

)2
] 5

2

, (5)

where the central densityρ0 and the “core” radiusrc are free parameters. The initial stars
velocities have been obtained self-consistently from the velocity distribution function that
generates the Plummer’s density law,

f (r , v) =
{
(−E)7/2, E ≤ 0
0, E > 0,

(6)

whereE = 1/2v2− φ(r ) is the individual star’s energy in the (spherical) potentialφ(r )
given by the Plummer mass distribution. The star velocities distributed according to Eq. (6)
are scaled to have a virial ratioQ = 2T/|Ä| = 0.964 (whereT andÄ are the kinetic and
the gravitational energies of the system) where the equilibrium value is 1; the inclusion of
a black hole with a mass 0.02 and 0.1 of the total star mass at the center of mass changes
the virial ratio toQ = 0.87 andQ = 0.75, respectively, inducing a stronger gravitational
collapse.

The equations of motion have been integrated by using the central difference Verlet-
scheme [21] with a fixed time step. This scheme allows an accuracy of the order of1t4 in
the positions and1t2 for the velocities. The time-step1t has been empirically selected by
requiring the relative error of the total energy to be smaller than 10−4 per time step. After
the value ofε was fixed several simulations were carried out, using different values of1t ,
up to the value which allowed the relative error of the total energy in the desired range to
be obtained.

The part of the PQE1 platform selected for the calculations consists of a single MIMD
node and a QH4 platform. The MIMD node has been used to perform data initialization, the
evaluation of the component of the star forces arising from the interaction with the black
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hole, the solution of the equations of motion, and the evaluation of the relevant physical
quantities (total and potential energy, virial ratio, Lagrangian radii, and mass and velocity
distributions). TheO(N2) force-loop has been, in turn, implemented on the QH4 platform.
For this purpose, a number of stars,Np = N/np (wherenp = 512 is the number of FPUs
of the QH4 platform), have been allotted to each FPU. The force calculation has been
performed by making use of a recently developed hypersystolic algorithm [24] in order
to exchange data among the processors. This scheme allows reduction of the redundancy
typical of the systolic algorithm [25], thus allowing savings of a substantial amount of
computing time.

In systolic-type algorithms, there is a regular sequence of calculation and communication
steps. In our case, after the allocation of equal groups ofNp stars on each FPU, the code
evaluates theN-body forces within each group. A copy of the positions of each group is
then moved, from the initial to the next-neighbor FPU, and, there, is interacted with the
resident group of stars. The process is repeated until each group of stars has visited each
others FPU. On each FPU is thus accumulated the force acting on the resident group of
stars.

The O(N2) problem requires, givenN data elements (coordinates and masses of the
N stars) being distributed amongp processors,O(N p) of interprocessor communications
(i.e., O(N) communications per processor). As this often leads to severe performance bot-
tlenecks, it is mandatory to search for new algorithms that are able to reduce interprocessor
communications to a numberO(N) per processor.

The hypersystolic algorithm, recently introduced, has the potential to decrease inter-
processor communications for computational problems of the type mentioned above to a
numberO(N

1
2 ) per processor. This is achieved by a 1-dimensional systolic mapping of the

data onto the processing elements and by the use of shortcut interprocessor communication
(hyperconnections) together with a replicated systolic mapping of data.

The basic feature of hypersystolic computing is a sequence of shifts called HS-base, which
represent the hypersystolic strides along the 1-dimensional chain to be performed in the
hypersystolic parallel calculation. The direct computation ofoptimalbases is exponentially
expensive, with the number of processorsp < 64. For larger numbers of processors, hitherto,
aside from the so-calledregular bases, new HS-bases have been determined [26] with a
search technique based on simulated annealing.

The implementation of the hypersystolic communication scheme on theN2 calculation
on the 512-node Quadrics QH4 has allowed about a 20% improvement in interprocessor
communication compared to the regular base implementation.

The chosen implementation strategy allows exploitation of a double level of parallelism:
the first consisting of the parallel implementation of the interstellar force calculation in the
SIMD platform by the hypersystolic algorithm; the second related to the concurrent black
hole–stars force calculation performed by the host platform during the time spent by the
SIMD machine to produce the interstellar force.

The machine performance was such that it allowed an execution timetex= 120 s for the
calculation of the single time step of the cluster dynamics, by using the mentioned PQE1
partition. About 20% of this time is related to different communication actions (to/from the
SIMD machine and within the SIMD machine, in the hypersystolic loop), the residual time
being spent on number crunching. The efficiency of the SIMD code (in terms of efficiency
of use of single FPU resources) was around 30%, thus leading to a sustained computational
power, in the SIMD part, of about 9 GFlops/s.
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4. COMPUTATIONAL DETAILS AND RESULTS

Three model systems have been simulated, all of them containingN= 128,000 masses.
The first one represents the globular cluster without any massive object; this system has been
retained as reference and its behavior compared to that of the other systems. The second
system contains a black hole of massmBH = 0.02 (in units of the total star mass) located at
the center of mass of the cluster. The third system contains a black hole withmBH = 0.1.

As we explained in Section 3, all three simulations were performed with a smoothed
distance of the formr ′i j = ri j + ε in the interaction potential; the third simulation (mBH =
0.1) was performed also with the Plummer’s potential (i.e.,r ′i j = (r 2

i j + ε2)1/2). This was
done to compare the effect of a difference in the smoothing formula on the overall dynamical
evolution of such a system, which we expect not to be relevant for average quantities, such
as the one discussed in the following, as confirmed also by a comparison of figures (see
Figs. 10, 14, 15, 16).

We express the model parameters taking as units of length and mass the initial radius
of the system and its total mass, respectively. Moreover, settingG = 1 implies thattc is
the time unit. In these units, the value ofε = R/500= 0.002 that we choose is much
smaller (one-tenth) than the average interparticle distance (which is∝ n−1/3

∗ , with n∗ being
the average number density); this guarantees an acceptable spatial resolution and keeps the
newtonian behavior of the interparticle force. In the case of the unperturbed cluster (without
the black hole), a1t = tc/250 has been used. The constraint imposed on the numerical
scheme to ensure an energy conservation of at least 10−4 per time step implied the use of
a smaller time step (1t = tc/500) when a massive black hole was present. This is clearly
due to the violent dynamics induced by a black hole whose mass is 2,560 and 12,800 times
the individual stellar mass. The systems have been simulated over a time interval of 10 or
20 crossing times.

Figure 3 shows the time behavior of a relative error in the mechanical energy of a system
without a central black hole. The error grows quickly (up to 1.8%) in the first crossing time,

FIG. 3. The absolute value of the relative error in energy as a function of time (in units of crossing times) for
a system without a black hole.
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FIG. 4. The absolute value of the relative error in energy as a function of time (in units of crossing times) for
a system with a black hole of massmBH = 0.02.

the error being induced by the overall dynamics; later, it increases very slowly, so that its
extrapolation up to a two-body relaxation time (i.e.,∼1, 000 tc) yields a still-reasonable
energy error of the order of 20%. As shown by Figs. 4 and 5, the presence of a black hole in
the system causes increasing problems in energy conservation: with the chosen time step,
in the case ofmBH = 0.02, the error, after 20tc, is of the order of 1.75%, while in the case
of mBH = 0.1 it grows up to 6.5%.

A relevant global indicator of dynamical activity of anN-body system is the virial ratio
Q = 2T/|Ä| of the system. This quantity provides a first picture of the global dynamics in
the cluster driven by the initial unbalance between kinetic and potential energy. The virial

FIG. 5. The absolute value of the relative error in energy as a function of time (in units of crossing times) for
a system with a black hole of massmBH = 0.1.
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FIG. 6. Virial ratio, 2T/|Ä|, as a function of time for a system without a black hole. Time is expressed in
units of crossing time,tc.

ratio is strongly perturbed by the presence of the massive object. This produces a strong
driving force, which brings the mass distribution to a virial equilibrium that is slightly dif-
ferent fromQ = 1 due to the nonhomogeneity of the interaction potential function induced
by the presence of the softening parameterε (the larger theε, the lower theQ value at virial
equilibrium). As an example, we report in Fig. 6 the time evolution ofQ for the case of a
system without a black hole. For the most massive black hole here considered (mBH = 0.1),
the virialization occurs more violently.

The virialization process is due to a violent relaxation that occurs as a consequence of
a series of damped (nonadiabatic) oscillations of the system (see Fig. 7). Virialization is
reached after three to five crossing times.

FIG. 7. Total potential energyÄ vs time for a system without a black hole. Time is expressed in units of
crossing time,tc.
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FIG. 8. Mass density of a system as a function of the distance from the center (in logarithmic scales and in
model units), in the case of a system without the black hole, att = 0 (lower curve) and att = 10tc (upper curve).
The curve att = 10tc has been shifted upward 1 dex for the sake of a better comparison.

The evolution of both the spatial and projected density radial distributions is shown in
Figs. 8 to 11, where the initial and virialized (t = 10tc) profiles are reported. The time
evolution leads to a steepening of the profile toward the cluster center (r < 0.1), which is
more pronounced at a larger black hole mass, and to the population of a “halo” (r > 1)
of high-velocity stars. Both the external profile and the inner one (the latter evolving, of
course, just in the presence of the central compact object) are attained in a short time, on
the order of one crossing time.

FIG. 9. Mass density of the system as a function of the distance from the center (in logarithmic scales and in
model units) in the casemBH = 0.02 att = 0 (lower curve) and att = 10tc (upper curve). The curve att = 10tc
has been shifted upward 1 dex for the sake of a better comparison.
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FIG. 10. Mass density of the system as a function of the distance from the center (in logarithmic scales and in
model units) in the casemBH = 0.1 att = 0 (lower curve) and att = 10tc (upper curvere). The curve att = 10tc
has been shifted upward 1 dex for the sake of a better comparison.

The slope of the space density inner distribution is formBH = 0.1 at t = 10tc, −0.92
as shown in Fig. 10 (i.e., intermediate between the values−3/2 and−1/2, characteristic,
respectively, of the density cusps analytically (and approximately) evaluated for the distri-
bution of stars bound to a black hole and of those unbound [16]). We note that the slope of
the halo region closely matches the expectedr−2 profile (see, for instance, [27]).

The dynamical evolution of the model clusters is also characterized by the appear-
ance of some anisotropy in the velocity distribution in the external regions. This has been

FIG. 11. Projected mass density of the system as a function of the distance from the center (in logarithmic
scales and in modelmBH = 0.1, att = 0 (upper curve) and att = 10tc (lower curve). The curve att = 10tc has
been shifted upward of 1 dex for the sake of a better comparison.
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FIG. 12. Anisotropy parameterβ (in model units) for theθ component of the velocity for the system without
the black hole att = 0.2 tc (solid line),t = 1 tc (dotted line),t = 10tc (dashed line).

characterized by the evaluation of the anisotropy parameters

βθ = 1− 〈v
2
θ 〉
〈v2

r 〉
,

βφ = 1− 〈v
2
φ〉
〈v2

r 〉
,

(the averages in angle brackets represent the dispersions of the polar components of the
velocity) as functions of the radial distance (see Figs. 12, 13, 14, and 16). Because the
initial distribution function given by Eq. (6) is only dependent on the energy, the initial

FIG. 13. Anisotropy parameterβ (in model units) for theθ component of the velocity for the system with
mBH = 0.02 att = 0.2 tc (solid line),t = 1 tc (dotted line),t = 10tc (dashed line).
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FIG. 14. Anisotropy parameterβ (in model units) for theθ component of the velocity for the system with
mBH = 0.1 att = 0.2 tc (solid line),t = 1 tc (dotted line),t = 10tc (dashed line).

velocity distribution is obviously isotropic, and bothβθ andβφ are zero (the three polar
components of the velocity being the same, on the average). The behavior ofβθ andβφ is
very similar, and we expect that evolution keeps the velocity vector invariant for rotations
on the plane orthogonal to the radial direction. We have thus plotted justβθ . In all the cases
studied, a rapid increase inβθ is evident in the outer regions, where, indeed, orbits are
more radially pointed due to the expansion of the stellar halo. Moreover, we note that the
more massive the central object, the more evident the negative minimum of the anisotropy
parameter around the initial boundary at short times. In the case ofmBH = 0.1, the transverse

FIG. 15. Mass density of the system as a function of the distance from the center (in logarithmic scales and
in model units) in the casemBH = 0.1 att = 0 (lower curve) and att = 10tc (upper curve). The curve att = 10tc
has been shifted upward of 1 dex for the sake of a better comparison. In the smoothing potentialn is set equal 2.
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FIG. 16. Anisotropy parameterβ (in model units) for theθ component of the velocity for the system with
mBH = 0.1 at t = 0.2 tc (solid line),t = 1 tc (dotted line),t = 10tc (dashed line). In the smoothing potentialn is
set equal 2.

components of the velocity dominate the radial ones, soβ ' −1; this means that a quick
effect of the instability caused by the massive object is that the transverse “temperature”
doubles the radial. This seems a transient effect because, as the evolution goes on, the radial
dependence of theβ parameter tends to be rather insensitive to the mass of the central object.
At t = 10tc, the isotropy is partially restored on the average, a radially biased distribution
of orbits on the outskirts being still evident.

Finally, Fig. 17 is a snapshot, att = 10tc, of the star distribution projected onto a coor-
dinate plane of the model cluster having themBH = 0.1 black hole at its center.

FIG. 17. Two-dimensional plot (restrained to the region containing the bulk of the mass distribution) showing
the structure of a globular cluster withmBH = 0.1, att = 10tc.
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5. DISCUSSION AND CONCLUSIONS

Concerning the main questions which have stimulated this work, it is possible to draw two
conclusions. First, theheterogeneityof the PQE1 platform can provide significant benefits in
the gravitationalN-body calculations, although the structure of the computational problem is
very different from that for which the SIMD platform Quadrics/APE100 was conceived. This
result confirms the relevance of the relation of Eq. (3), which should be considered the most
important constraint to be fulfilled in the mapping of a code onto a computational platform.

The reported data confirm, in fact, that the increase in computational efficiency provided
by heterogeneous platforms (where different architectures can coexist and provide an ideal
computational frame to execute different parts of the complex computing codes character-
ized by different algorithmic complexity) can be seen as a key feature for high-performance
computing, whose benefits should be more attentively searched and exploited.

The achieved sustained computational power allows the simulation of the dynamics of one
crossing time (withN= 128,000) using a wall clock time of the order of 6× 104 s; this figure
allows simulations of the order of tens of crossing times. The new SIMD machine, derived
from the INFN project APEmille and constituting the follow-up of the Quadrics/APE100
platform, will enhance the computational power by a factor of 10. This will permit a study
of the evolution of the cluster over a time of the order of hundreds of crossing times (i.e.,
of the order of the two-body relaxation time).

The second conclusion is that from the astrophysical point of view, this work has intro-
ductory relevance to the “direct” study of the dynamics of populous stellar systems (up to
the scale of globular clusters) whose internal densities vary over a range of scales such that
approximations in the interaction potential (as multipolar expansions, solutions to Poisson’s
equation on a grid, etc.) are of questionable reliability. By the way, this work has shown how
the inclusion of a massive object in a quasiequilibrium model of a globular cluster, repre-
sented as a set ofN= 128,000 stars interacting with the “exact” potential (even if smoothed
on a scale on the order of 1/10 the average interstellar distance), has consequences to the
overall dynamics. It induces a violent relaxation within a few crossing times, corresponding
to an evolution of the star radial distribution toward a central peaked distribution close to
ρ ∝ r−1 in the case of the most massive black hole considered (mBH = 0.1 times the total
stellar mass). Another effect enhanced by the presence of the massive object is the loss of
isotropy in the velocity distribution, both in the outer regions, where radial orbits dominate,
and in an intermediate zone, where, on the other hand, transverse components of the velocity
prevail. The inner region stands isotropic throughout the evolution.
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